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SUMMARY

A procedure based on the method of similar solutions is presented
by which the skin friction, heat transfer, and boundary-layer thickness
in a laminar hypersonic flow with pressure gradient may be rapidly eval-
uated 1f the pressure distribution is known. This solution, which at
present is restricted to.power-law variations of pressure with surface
distance, is presented for a wide range of exponents in the power law
corresponding to both favorable and adverse pressure gradients.

This theory has been compared to results from heat-transfer experi-
ments on blunt-nose flat plates and a hemisphere cylinder at free-stream
Mach numbers of 4 and 6.8. The flat-plate experiments included tests
made at a Mach number of 6.8 over a range of angle of attack of +10°.
Reasonable agreement of the experimental and theoretical heat-transfer
coefficients has been obtained as well as good correlation of the experi-
mental results over the entire range of angle of attack studied. A simi-
lar comparison of theory with experiment was not feasible for boundary-
layer-thickness data; however, the hypersonic similarity theory was
found to account satisfactorily for the variation in. boundary-layer
thickness due to local pressure distribution for several sets of
mesasurements.

INTRODUCTION

With the assumptions of an incompressible fluid and similarity in
the velocity profiles through the boundary layer, an exact solution of
the boundary-layer equations may be obtained. The assumption of simi-
larity leads to a power-law distribution of velocity at the edge of the
boundary layer with surface distance. This solution was pointed out by



Falkner and Skan (ref. 1) and improved calculations were made by Hartree
(ref. 2) and Smith (ref. 3). Cohen and Reshotko (ref. 4) considered
also similarity in the temperature profiles end extended the results to
the compressible case.

Utilizing the transformations of Illingworth (ref. 5) or Stewartson
(ref. 6), various investigators have given solutions of the compressible
boundary-layer problem. These solutions given in references 4, 7, and 8,
in general, are exact only for the case of a Prandtl number of 1. How-
ever, the solutions given in reference T give an assessment of the effect
of Prandtl number.

Li and Nagamatsu (ref. 9) have shown the pressure gradient param-
eter B for the incompressible problem can be simply related to the
pressure gradient in compressible flow if hypersonic and isentroplc flow
are assumed to exist at the edge of the boundary layer. Li and Nagamatsu,
however, used this relation to solve only the special case of a boundary-
layer self-induced pressure gradient. It 1s the purpose of the present
analysis to show the general usefulness of the hypersonic transformation
for predicting viscous effects on wing surfaces. Preliminary results
from this investigation were reported in reference 10.

SYMBOLS

A,B,C,D coefficients in equations from zeroeth-order strong-
interaction theory (see egs. (17) to (20))

BT
S = o
Hoolw
Heo
Ce local skin-friction coefficlent tncluding effect of pressure
gradient, 2T 5
Poollos
Cg average skin-friction coefficient including effect of pres-
sure gradient
cp specific heat at constant pressure

d model diameter



Hs

Ho

Kl) KQ)KE)KL}

L

function related to stream function

local heat-transfer coefficient including effect of pressure
gradient

local stagnation enthalpy
free-stream stagnation enthalpy
coefficients defined in equations (7) to (10)

length of plate
Mach number

Prandtl number

h

Stanton number including effect of pressure gradient, —=
Cp, 0Pocleo

exponent in equation for pressure variation with x (see
eq. (2))

pressure
local surface pressure at length L

undisturbed-free-stream Reynolds number with x as character-
istic length, Pot

00

X

enthalpy function, -1

Hg
i
absolute temperature
model thickness
velocity

distance along surface in stream direction

pressure-gradient parameter in the notation of reference 4

ratio of specific heat at constant pressure to that at con-
stant volume



T shear stress at wall

o) boundary-layer thickness

o] density

1 similarity variable

o] Reynolds analogy factor

! dynamic viscosity

Subscripts:

b condlitions over plate following blunt nose
r recovery conditions

L value at chord length of plate
W wall

0 free-stream stagnation

o undisturbed free stream

Primes denote differentiation with respect to 1 or parameters
evaluated by T-prime method.

Bars denote values of the parameter obtained on a plate with zero
pressure gradient.

THEORY

Evaluation of Basic Paramewefs

Li and Nagamatsu (ref..9) have shown that the pressure-gradient.
parameter $ can be related to pressure gradicnt in the physical plane
by a simple relation if hypersenic and isentronic flow at the edge of
the boundary layer are assumed. This relation is

_i1-7 n
B = Y n+ 1 (1)
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where in the physical plane

p, « X8 (2)
Lees (ref. 11) had previously given the special case of this solution
where n = -1/2 or B = (y - 1)/y 1in relation to the asymptotic solu-
tion for the strong-interaction boundary-layer self-induced pressure
gradient. Li and Nagamatsu also only considered in detail the case
n = —1/2.

Following the analysis of Li and Nagamatsu (ref. 9) for hypersonic
flow, Prandtl number equal to 1 and with n in general, the laws for
skin friction, heat transfer, and boundary-layer thickness can be written
as follows: For local skin friction

Ce Dw

L _x \/_ (3)
Cf 1 P

C

:£;'= KQ\’EElE . (+)
Cp Pw

= K \/f)_: (5)

For average skin friction

For heat transfer

=313

For boundary-layer thickness

5. K (6)
5

\Prr/Pe

where the symbols with bars represent the values for the case in which
the pressure gradient is-zero. (The derivation of equations (3) to (6)
is given in appendix A.)

A comparison of equations (3) to (6) with equations (&) to (8) of
reference 12 shows that the square.root of the pressure ratioc appearing
herein is really a correction to account for local conditions different
from the reference conditions in the undisturbed stream. The coeffi-
clents K account for the effect of pressure gradient itself, 'and their
deviation from unity is thus a measure of the importance of this gradient
apart from the effect of changes in local conditions.



The coefficients K are:

£ \12(1 + n) (N
¥

Ky 0.

f"

KQ = w
0.332y2(1 + n)

_SV' ¥2(1 + n) (9)
Sw 0.664

(8)

N9
1

- f'2)dﬂ

—_ w(s+1
K, =\/2(1+n) j;) (10)

V2 [fom (s+1- f'z)qu=o

The values of the zero-pressure-gradient. parameters used in the
derivation  of equations (3) to (6) were (Prandtl number unity):

_ er
Ce _C.V:’E = 0.664 (11)
EF‘ZR_&E = 1.328 (12)

- Rw. x h Rw x
ot,\ & = o | & - 0% (13)

By Toax _ R [fo (s+1 - f'2)dﬂ (14)

Cw
B=0

Values of the integral function in equation "14) were obtained from the
following equation (suggested by eq. (2.10) of ref. 13) which utilizes
the accurate constants for S, =0 and P = 0 given in reference 3.

E[f: (s+1- f“?)dn] = 1.72078(Sw + 1) + 0.66412  (15)
B=0



The available values of f.", S,'[S,, and the integral function

are given in table I. These values are also plotted in figures 1 to 3
for completeness. Most of the values of the integral function given in
table I were obtained by the simple addition of the values of the dimen-
sionless displacement and momentum thicknesses given in table II of
reference 4 and table VI of reference 3. Where table II of reference 4
was not complete a method used in reference 3 was found adaptable for
obtaining accurate values of this integral. For the present problem
the integral may be stated as

1
o Jf Sdn +ny - f3f7' - £;" + £,"
JF (s+1-¢%ag= ln 0
0 Ny 1+8

(16)

1

The values of J[ S dn were obtained by Simpson's rule from table I
0

of reference 4.

Values of the integral function (eq. (16)) for B = 0.286 and 0.400
are given in reference 9. Other values were obtained from a mechanical
integration of tabulated boundary-layer properties given in reference 8.
Where a value of f)", Sy'/Sy, or the integral function had not been

computed, the faired lines shown in figures 1, 2, and 3 were used for
the computations presented in this paper.

Some interesting general results concerning the laws for the vari-
ation of local and average skin friction, heat transfer, and boundary-
layer thickness with distance along the plate may be obtained from equa-
tions (3) to (6) with the condition of equation (2). One finds that

n-1

Cfa:hc:cx2

n-1

Cp <« L2

i-n
5 « x 2



When one examines the law for boundary-layer growth, the exponent
in the boundary-layer-growth law as a function of the exponent in the
pressure variation law is as follows:

n L -n
2
-2/3 5/6
-1/2 3/4
-1/3 2/3
0 1/2
1/3 1/3
1/2 1/4
2/3 1/6
1 0
2 -1/2

The case of n = 0 1is of course the constant.-pressure flat plate on
which the boundary-layer growth follows a paruabolic law. With falling
pressures (favorable pressure gradients, n negative), the rate of
growth of the boundary layer 1s greater than on a constant-pressure
plate. For rising pressures (adverse pressure gradients, n positive),
the rate of growth of the boundary layer is less than on a constant-
pressure plate. When the rate of increase of pressure with distance
from the leading edge offsets the shearing forces, the boundary-layer
thickness is constant over the entire plate and for still higher adverse
pressure gradients the boundary layer thins as the distance from the
leading edge increases. The preceding remarks apply only when the
boundary-layer solutions are real which occurs only when

( - 1)
B>l

This is shown in the following sketch which i3 a gfaphic expression of
equation 1.
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A1l values of PBy/(y - 1) which are less than -1 result in values
of the exponent n of less than -1, and in these cases the results
from equations (7) to (10) will be imaginary.

Comparison of Air and Helium

By use of equation (l), values of n corresponding to values of
B were obtained for ratios of specific heats 7y of 7/5 and 5/5 and
the coefficlents K;, Ko, K5’ and K, were evaluated. These coeffi-

cients are shown as a function of n for both favorable and adverse
pressure gradients in figures 4 to 7. Thus, for a known pressure varia-
tion behaving as a power law with respect to physical distance along a
plate the change in skin friction, heat transfer, and boundary-layer
thickness in hypersonic flow can be readily found.

These values of the coefficients K reveal several interesting
results concerning a comparison between hypersonic flow in air and
helium environments. For favorable pressure gradients, the effects of
a glven pressure gradient in air and helium are predicted to be very
similar for the same temperature and pressure ratios. This is evideut
in figures L{a), 5(a) and (b), 6(a) and (b), and 7(a) for local and
average skin friction, heat transfer, and boundary-layer thickness.
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In the case of small adverse pressure gradients (rising pressures)
again the results from air and helium are basically similar (figs. 4(v)
and (c), 5(c) and 5(d), 6(c) and (4), and 7(b) and (c)). However, as
the adverse pressure gradient increases there is an increasing deviation
between the predictions for air and helium. This deviation is perhaps
most easily shown by referring to the value of n at which separation
oceurs. For example, refer to figures 4(b) and (c) and the temperature
ratios of 2, 1, and 0.6 (Kl = 0 1ndicates separation). Note the large

differences in the values of n for separation between air and helium
for these temperature ratios.

The indications from this theory are that the value of 7 1is
important in determining the effect of large adverse pressure gradients;
however, the significance of this result is not clear since it is prob-
able that certain assumptions inherent in the derivation will be violated
in large adverse pressure gradients - such as, for example, that the
flow is isentropic and locally hypersonic at the edge of the boundary
layer.

For temperature ratios of O and 0.2, the solutions for 7 = 5/3
with an adverse pressure gradient are real for all values of f; how-
ever, this is not the case for 7y = 7/5 where an imaginary solution
is encountered for B < -2/7. (See the discussion in the previous
section.)

Effect of 7 in General for Favorable Pressure Gradient

Figure 8 presents calculations of the coefficlents K for values
of 7 ranging from 1 to 2 for two values of tle pressure-law exponent
n in favorable pressure gradients. In order to show the effect of
temperature, the insulated-wall case and the cese of a wall with zero
temperature are shown.

One finds that the coefficients Kl and Ké in the skin-friction

equations are sensitive to 7y when the temperesture is close to the
insulated-wall value but that the sensitivity to variation in 7 1is
much reduced when the wall temperature approaches zero.

The coefficients K3 and K, 1in the heas.-transfer and boundary-

layer thickness equations are found to be relaively insensitive to
both changes in wall temperature and 7.
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Hypersonic Self-Induced Pressure Gradient on a Flat Plate
(Strong-Interaction Solution)

Various investigators have shown that the asymptotic solution for
the case of large boundary-layer-induced pressures yields a behavior of
the pressures with distance from the leading edge of a flat plate of the

form p « x'l/a. Thus, this problem as discussed in reference 8 may be
treated as a particular example of the hypersonic similar solutions.

(A survey of this aspect of the hypersonic-interaction problem generally
referred to as zeroeth-order strong-interaction theory is given in ref-
erences 9, 12, and 14.) If this approach of Li and Negamatsu (ref. 9)
1s used, the induced pressure ratio, boundary-layer thickness, local
skin-friction coefficient, and local heat-transfer characteristics can
be written as:

p)
Py _ , MY Cu (17)
Po " [Fox
1/2
8| Boox _ BM_° VBoyx_ (18)
Xy Cv MmBVE;
5 1/2
Cf oocho X a C Moo {C_w (19)
1/2
NS't,CDvROO,X _ M""BJC_V- (20)

With equation (17), equations (18) to (20) can be seen to be a special
form of equations (3) to (6). The coefficients A, B, C, and D are
given by the following equations which are included for convenience:

e e o0
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e A
7 (23)
A AR N A W
o

The coefficients A, B, C, and D ar= plotted in figure 9 as a
function of the ratio of wall temperature to stagnation temperature for
various values of the ratio of specific heats 7. Three values of 7
are shown - that is, values that correspond to helium, air, and an arbi-
trary value of 7y = 1.2. Actually a fourth point may be deduced since
for y=1, A=B=C=D=0 for all wall temperatures. This figure
extends the values given in reference 9 and corrects the values of D
in reference 9 which are too high by a factor of 2.

EXPERIMENT AND THEORY FOR THE HEAT TRANSFER TO PLATES

WITH BLUNT LEADING EDGES

A case of considerable practical interest is the plate with a
blunt leading edge in which the blunt lead:ng edge can generate large
pressure gradients on the following plate {refs. 10 and 15). If the
leading edge is sufficiently thick in relation to the boundary layer,
the boundary layer will be submerged in the high entropy layer adjacent
to the plate, and the restriction of the theory to constant entropy
along the edge of the boundary layer may be considered to be satisfied;
however, there is difficulty with the restriction to locally hypersonic
flow. 1In the region of the Jjuncture between the nose and, say, & fol-
lowing slab at zero inclination to the fres-stream flow, the local Mach
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nunber is low (local M about 2 or 2.5). The local Mach number
increases as the flow moves downstream over the plate; however, with a
free-stream Mach number of, for example, about 4O the local M far
downstream on the plate is only 6 to 8 if the boundary layer is still
assumed to be submerged in the high entropy layer.

Experimental heat-transfer information on blunt-nose configurations
at Mach numbers of about 4 to 7 is available in references 16 and 17.
In addition new data have been cobtained at a Mach number of 6.8 on a
hemicylinder-nose slab from tests in the ll-inch hypersonic tunnel.

Experimental Apparatus

Tunnel and test condlitions.- The experiments were conducted in the
Langley ll-inch hypersonic tunnel, which is a blowdown facility. The
two-dimensional nozzle with a nominal Mach number of 7 had contours
machined from Invar. Some calibration data for the Invar nozzle may be
found in reference 18 and a description of the tunnel, in reference 19.

The Mach number was between 6.76 and 6.81 for the heat-transfer
data and 6.81 and 6.86 for the pressure data. The lowest Mach number
was obtained at the lowest test unit Reynolds number. The slightly
different Mach number levels for the heat transfer and pressure data
are attributable to the small increase in Mach number with time during
the length of a test run. Heat-transfer data were obtained from the
transient temperatures near the start of a test run by a quick starting
technique which approximates the sudden immersion of the model in a
fully developed test-section flow. Pressure data were obtained about
40 seconds after the start of flow in order to eliminate lag in the
pressure tubing and cells as a source of error. The data were obtained
at an average stagnation temperature of about l,ll+0o R.

Models and instrumentation.- The model used for the investigation
of the surface pressure and heat transfer was the slab with a hemi-
cylindrical leading edge shown in figure 10. The same model was used
to obtain both pressures and temperatures with the pressure orifices
and thermocouples being located on opposite walls of the model. A
single sheet of 1/16-inch-thick Inconel formed the skin of the model.
The diameter of the hemicylindrical leading edge was B/h inch and the
overall length of the plate was 6 inches. The properties of Inconel
given in reference 20 were used in evaluating the heat-transfer data.

The skin temperatures were obtained from chromel-alumel thermo-
couples formed from No. 30 wire. The thermocouple wires were welded
together to form a bead which was lnserted in a hole in the surface
and welded in place with Inconel.
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Surface pressures were measured by means of the anerold-type six-
cell recording units described in reference 19.

Comparison of Heat-Transfer Theory With Experiment

Knowledge of the pressure distribution is of course important in
determining the heat-transfer distribution. For present purposes, in
order to free the heat-transfer theory of the additional source of
error contained in an attempt to predict the pressure distribution,
the measured pressure distributions were used. In order to satisfy
the requirements of hypersonic boundary-layer similarity theory, power
laws were fitted to the measured pressure distributions. The top plots
of figures 11(a) and (b) show the measured pressures and the type of fit
to a power-law variation that was obtalned.

The flat-plate (dp/dx = 0) value of the Stanton number may be
obtained by any preferred method. In the present analysis, the T-prime
method and the modified Reynolds analogy were applied to the Blasius
skin-friction value to obtain the correlating parameter:

NSt,ooJRoo,x = Q&?aﬁ (25)

where C' = (pm'Tm)/(p;Iw') and the Reynolds analogy factor o = NPrz/3
evaluated at T,' (the value of Np, for air tabulated in ref. 21 being

used). The T-prime equation used was that given by Monaghan in
reference 22:

H

To' 2w, 0.h68NPrl/3<;’£—r - g—‘i) - o.ommpy LA M (26)

-3
H

[+ 0

In general, because Np, 1s evaluated at the temperature T-prime,

equation (26) is solved by iteration. However, it 1s interesting to
note that for very high Mach numbers equation (26) reduces (for
Np. = Constant) to

pr T 1 5/6
T (1 - 0.468Np1/3) + 0.468N5,5/6 - 0.273Mp, (27)

Therefore, for given wall and stagnation temperatures, the T-prime
temperature is constant. If the value of Npy 1s assumed to be 0.72,

equation (27) becomes
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T' _ 0.160 + 0.580 ¥ (28)
To To

If equation (25) is assumed to apply when the proper local condi-
tions are utilized then the effect of blunting on a flat plate may be
evaluated in a simple fashion. Assume that, for the blunt-nose flat
plate, the flow over the plate has passed through a normal shock and
that the flow at the edge of the boundary layer is at a constant pres-
sure pp. The ratio of the heat-transfer coefficient for the blunt-

leading-edge plate to that for the sharp-leading-edge plate is then

by _ i-aw‘b' Tw' Up Pp (29)

in which, to repeat, the only approximations involved are the universal
application of equation (25) and constant wall pressure. The factor
given by equation (29) was multiplied by the result from equation (25)
to obtain the values given in figure 11 for the blunt leading edge with
dp/dx = O and Py = DPg-

The heat-transfer correlation parameter NSt,w Rm,x is plotted in

the bottom plot of figures 11(a) and (b) as obtained from the experi-
ments of references 16 and 17 and from the hypersonically similar
boundary-layer solutions. For the heat-transfer data of reference 16
(fig. 11(a)) in the range in which a power law could be fitted to the
pressure data the agreement with similarity theory is considered
adequate.

The data of reference 17 were obtained on a hemisphere cylinder at
a Mach number of 6.8. 1In figure 11(b) these data are compared to the
present theory with the Mangler transformation applied (ref. 23) to
account for the hemisphere-cylinder configuration. Also, in this figure
is the calculation from reference 17 for the Stine and Wanlass theory
(ref. 24). There 1is good agreement between the Mangler transformed
hypersonic similarity theory and the Stine-Wanlass theory. (The Mangler
transformation is included in the Stine-Wanlass theory.) The agreement
of the theory with experiment i1s considered good.

A comparison of the new data obtained in this investigation with
both zero-pressure-gradient theory, hypersonic similarity theory, and
the theory of reference 25 1s shown in figure 12. Note the difference
between the heat-transfer parameter presented in figure 12 and that pre-
sented in figure 11; in figure 12 the parameter of figure 11 has been
divided by the square root of the local pressure ratio Py/Po to account
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in a simple manner for the variation of the _ocal conditions. Only the
theoretical values of the heat-transfer parameter at zero angle of attack
are shown; however, there is not a large effect due to angle of attack.
This can be shown by using equations (25) to (28) and (31) for the flat
plate with the proper Jocal conditions. The following values are obtained
for the heat-transfer correlation parameter and recovery temperature for
both sharp- and plunt-leading-edge flat plates with a constant wall pres-
sure at Mg = 6.9, Tg = 1,140° R, and Ty = 560° R:

Sharp leading edge Blunt leading edge
g | Pl | Mot effax | B | BstefRemx | Ir
{Py/Peo To VPu/Pu To
10 4 .32 0.385 0.854 0.340 0.907
0 | 1.000 .393 Ll 365 .879
-10 .139 397 .83%8 384 .857

On the model the fourth thermocouple from the shoulder (x/t = 2.12)
was found to be faulty. Because of twisting of the bare thermocouple
wires the effective thermocouple Junction occurred below the skin inside
surface. However, even though this caused the indicated heat transfer
to be lower than the actual heat transfer, +he data from this station
were not eliminated in figure 12 because this fault should not seriously
affect the correlation of the indicated heat transfer.

The values of Pw/Pw used with the exjerimental values of
N R are the local measured values siown at the top of figure 12.
St,ef o, x

The theoretical hypersonic similarity solution parameter is based on
the value of n obtained by fitting a power law to the pressure data.
The curve in figure 12 labeled Cohen-Reshotko was calculated using the
"{inear method" suggested in reference 25. The required local external
flow conditions on the cylindrical nose were evaluated from pressures
calculated from the modified Newtonian concept plus a Prandtl-Meyer
expansion (ref. 26) and on the slab, from the curve (shown in the top
plot of figure 12) for the power law fitteé to the experimental pressures.
In figure 12 there is good agreement between the Cohen-Reshotko theory
and the hypersonic similarity theory especially considering the fact
that the local Mach numbers on the plate were in the range from 2.1

to 2.6 at a = 0° which is low for the assumption of hypersonic flow.
The agreement of both theories with experirent is good except near the
cylinder-slab Jjunction and the correlation of the heat-transfer data

is considered good. The range of pressures involved, in the data shown
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in figure 13, is about a factor of 10; however, the utilization of the
square root of local pressure ratio to account for local conditions
collapses the heat-transfer parameter to nearly a single curve.

The range of heat-transfer data available has included only small
to moderate pressure gradients. Thus, it has not been possible to check
critically the pressure-gradient effects predicted by hypersonic simi-
larity theory. However, 1t is clear that the simple correction for
varying local conditions - the square root of the local pressure ratio -
offers a convenient method for assessing the effect on the heat transfer
of pressure gradients and angle of attack. This concept is pursued
further in the next section.

EXPERIMENTAL EVIDENCE FOR EFFECT OF PRESSURE GRADIENT ON

BOUNDARY-LAYER THICKNESS

Equation (6) indicates that locally high pressures will thin the
boundary layer. Figure 7(a) shows that, in a favorable pressure gra-
dient, the gradient itself has a relatively small effect on the boundary-
layer thickness. Data are available for boundary-layer thicknesses on
a sharp flat plate in reference 27 and a blunt flat plate in refer-
ences 16 and 28. The free-stream Mach numbers for these data are in
the range from 4 to 6. Because of these relatively low test Mach num-
bers the displacement thickness of the boundary layer and the total
thickness are not the same. 1In addition, but also related to the low
test Mach numbers, the definition of the edge of the boundary layer is
arbitrary; that is, 1t can be defined on the basis of velocity, shear,
or total-pressure profiles. Different sets of data cannot be compared
because of this. However, for any set of data in a pressure gradient
with a consistent definition for the edge of the boundary layer, it
should be possible to obtain a check on certain of the theoretical
concepts.

The data obtained on a sharp-leading-edge flat rlate at a free-
stream Mach number of 5.8 by Kendall (ref. 27) are shown in figure 13.
For these data, the pressure variation (shown in the top plot of fig. 13)
is entirely the results of the displacing effect of the boundary layer.
In the center plot of figure 13 is shown the boundary-layer thickness
in the form of the correlating parameter given by zero-pressure-gradient
theory. Note the drop off in the boundary-layer-thickness parameter at
the lowest Reynolds numbers. In the bottom plot of figure 13, the
boundary-layer-thickness parameter has been modified to the form sug-
gested by equation (6) which includes the square root of the local pres-
sure ratio to account for variation of local conditions. The data in
this form are found to be essentially independent of Reynolds number as
predicted by theory.
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In reference 16, Creager presents boundary-layer-thickness measure-
ments on an unyawed hemicylinder-nose slab at zero angle of attack and
a Mach number of 3.95. In this case the pressures induced on the slab
are due to a combination of leading-edge bluntness and boundary-lasyer-
displacement effects. These measured pressures are shown in the top
plot of figure 14. Toward the rear of the slab the pressures drop off
more rapidly than on the forward part of the slab. This behavior near
the trailing edge is believed to be due to side- or trailing-edge geom-
etry and viscous effects or a combination of both. These effects show
up in the measured boundary-layer thicknesses. In the center of fig-
ure 14 again is shown the boundary-layer-thickness correlating parameter
given by zero-pressure-gradient theory. The slope of this parameter as
a function of distance is marked. When modified to account for local
conditions by using the square root of the local pressure ratio according
to hypersonic theory, the boundary-layer-thickness parameter 1s essen-
tially independent of distance from the leading edge except for the
stations near the trailing edge which were discussed previously.

Creager has also obtained pressure and boundary-layer-thickness
measurements (ref. 28) on an unyawed hemicylinder-nose slab at a Mach
number of 5.7 and angles of attack of 0° and 10°. These data are shown
in figure 15. Here the pressures obtailned on the slab are due to the
angle of attack as well as leading-edge-bluntness and boundary-layer-
displacement effects. The pressure drop off toward the trailing edge is
more pronounced in this case than in his previous data (rig. 14). In
fact at both angles of attack the pressures at the trailing edge drop
well below the inviscid sharp-plate value, a behavior which 1is not
expected unless there are the side and trailing edges mentioned for the
previously presented data at a Mach number cf 3.95. At both angles of
attack, the pressures at x/t > 10 appear to be affected by the trailing
edge. The boundary-layer-thickness correlating parameter shown in the
center of figure 15 shows a considerable drcp off as the leading edge
is approached. When, as before, the square root of local pressure ratio
is included the dependence of the boundary-layer-thickness correlating
parameter on surface distance is considerably reduced (for x/t < 10)
and the data at both angles of attack correlate.

In figures 13 to 15, data have been presented for boundary-layer
thicknesses measured in pressure fields resilting from a variety of
test conditions. Among these are different free-stream Mach numbers,
boundary-layer-displacement effects, leading-edge-bluntness effects,
and changes in angle of attack and Reynolds number per inch. In cases
where trailing-edge or tip effects did not intrude, the simple boundary-
layer-thickness correlating parameter inclucing local conditions in the
form suggested by hypersonic theory is essentially independent of sur-
face distance and other conditions.
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FURTHER REMARKS ON APPLICATION OF THEORY

In cases where the pressure variation with distance is such that
a power-law fit 1s not considered valid, a deviation from the simple
approach 1s suggested. In such cases 1t is possible that a step-by-
step power-law approximation to the actual pressure-distribution curve
will be valld in which the boundary-layer thicknesses at the junctions
between steps would be matched (analogous to the method presented in
ref. 29). Another more simple approach would be to assume “"local
similarity" - that is, use values of the exponent n to determine local
values of the coefficients K (in a manner similar to the procedure
given in ref. 24).

CONCLUDING REMARKS

A procedure based on the method of similar solutions has been pre-
sented by which the skin friction, heat transfer, and boundary-layer
thickness in a laminar hypersonic flow with pressure gradient may be
rapidly evaluated if the pressure distribution is known. This solution
which at present is restricted to power-law variations of pressure with
surface distance was pointed out by Li and Nagamatsu (GALCIT Memorandum
No. 25) who, however, only worked out in detail the case of the strong-
interaction self-induced pressure gradient by this method. The pres-
entation herein is for a wide range of pressure gradients both favorable
and adverse though the usefulness of the results for the strong adverse
pressure gradients is not clear.

This theory has been compared to results from heat-transfer experi-
ments on blunt-nose flat plates and a cylinder at free-stream Mach num-
bers of 4 and 6.8. These experiments included tests made at a Mach
number of 6.8 over a range of angle of attack of +10°. By using power-
law fits to the experimentally obtalned pressure distributions, reason-
able agreement of the experimental and theoretical heat-transfer coeffi-
clents have been obtained as well as good correlation of the experimental
results over the entire range of angle of attack studied. However, the
hypersonic similarity method gives essentially a correction for the
effect of pressure gradient. For the available data this correction
is generally smaller than the effect of local conditions, therefore,
the validity of applying this method to the blunt shapes considered
herein cannot be considered to have been critically checked as yet.

Because of the arbitrariness of the definition of boundary-layer
thickness and the finite Mach number of the avallable tests, a check
of hypersonic similarity theory with measured boundary-layer thick-
nesses 1s not feasible. However, the simple concept of including local
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conditions through the use of the parameter (the square root of the
local pressure ratio) suggested by standard hypersonic approximations
gave a boundary-layer-thickness parameter essentially independent of
surface distance and other conditions such as angle of attack and vari-
able unit Reynolds number.

Langley Research Center,
National Aeronsutics and Space Administration,
Langley Field, Va., February 24, 1959.



APPENDIX A
DERIVATION OF THE HYPERSONIC EQUATIONS FOR SKIN FRICTION,

HEAT TRANSFER, AND BOUNDARY-LAYER THICKNESS

The following symbols are the ones used in this appendix:

a sonic velocity
Ce local skin-friction coefficient
Cr average skin-friction coefficient
Cp specific heat at constant pressure
Kt
L length of plate
m exponent from Uy « xm
Ngt Stanton number
P static pressure
R Reynolds number
S enthalpy function
t static temperature
U velocity in incompressible plane
u velocity in compressible plane
X longitudinal coordinate in incompressible plane
X longitudinal coordinate in compressible plane

y distance normal to surface in compressible flow
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g pressure-gradient parameter, mef T
V4 ratio of specific heaﬁs
3] local boundary-layer thickness
]
Moty
M dynamic viscosity
v kinematic viscosity, u/p
p mass density |
T shear stress at surface
Subscripts:
e local flow at edge of boundary layer
o stagnation conditions
w wall conditions
o] undisturbed free-stream conditions

The method used to obtain equations (3) to (10) in the main text
is a generalization of the derivations presented by Li and Nagamatsu in
reference 9. However, in the following presentation, in general, the
nomenclature of Cohen and Reshotko (ref. 4) is used. According to equa-
tion (42a) of reference 4 the wall shear is

T " m+ 1V
Ce v = 5= fy [27\(1 + sw)] 2 % (A1)
Pyle €

or

" m+ 1Ho Ye Py x
cf’m,Rw,x = fy [2)\(1 + s,,,)] J—z— I, Oc 7o X (a2)



23

Now, with
px?B )
Hwto
)‘=—f;ug > (A3)
1+8, = %g (Constant cp)
y
there 1s obtalned
'ﬁ;——- Smt 1 1, 8 x 1/2 N

Now X 1s related to x according to the modified form of Stewartson's
transformation presented in equation (6b) of reference 4 where

- ) Pw Be
X \/; B 5 X (a5)

and pe = py. With isentropic flow at the edge of the boundary layer

e
- @

€ - A6
% = (5o (A6)
and the assumption that
fa” QU (AT)
Po
then
n(3y-1)+2y
X« x 2y (A8)
or
37-1
X _ 3 2y /EE) 27 (A9)
X~ a3y - 1) + 27\Pg

If equations (A6) and (A9) are substituted into equation (A4) the fol-
lowing is obtalned for an invariant veloclity at the edge of the boundary
layer (the hypersonic assumption):
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1/2
C R - ppmjm+ 1 n(3y - 1) + 2y / Pw (A10)
f’wd w,x = by 5 5y o

Now, since

m+ 1l 1
2 T 2-8

(A11)

and, according to the Li-Nagamatsu hypersonic transformation (consistent
with the assumption of equation (AT7)),

1l - n
B = __.7_1 - (A12)

equation (AlO) becomes, when the undisturbed free stream 1s used as a
reference,

Cr, R Do
N X pomio(1 + n) 2

W D (A13)
VCw ®
The average skin-friction coefficlent is given by
L
cF=.1_f Cr dx (A14)
L Jo

Substituting equations (A7) and (A13) into (214) gives

CF)(X)VRG),L = )-l—fw" V_g_;r_ (Al5)
Ve V(1 + n) 'Pe

The heat-transfer coefficient (Stanton rumber) may be evaluated
by using the Reynolds analogy factor given by equation (45) of refer-
ence L4 where

MNsy _ _Su'/Sw (A16)

Cf fw"

Thus, utilizing equation (Al3) gives:

N ol Roo 1
_S&\[C:w___ [Bo,x _ %(.ES:_)l(e(l v n) Y (A17)
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In order to obtain the boundary-layer thickness, for the present
problem, equation (35) of reference k4 may be written as

D a vAX
070 o an (A18)
Pw e ym + l Ue to

If equations (A3), (A6), (A9), (All), and (Al2) are used with the con-
dition that the velocity is not changing at the edge of the boundary
layer, equation (A18) becomes

5 [Reo
X

X _y -1 MmQJEQ ____g____.\/hw S+ 1 - f'2)dn (A19)
Cw 2 Pv fo(1 + n) Jo (
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TABLE I

SUMMARY OF PARAMETERS NEEDED FOR WALL-SHEAR, HEAT-TRANSFER,

AND BOUNDARY-LAYER-THICKNESS CALCULATIONS

5, + 1 B £ S5 j (s+1-1r2an Se+ 1| B £ |- S f (s+1- £y
5 o S 0
-0.10 B.0.1613  [%0.2076 a6 449 0.6 |-0.235 |®-0.0500/%0.1118 82,728
-.1305 &-.0500 8.3139 & .713 -.246 | ®o & 3123 804428
-.1295 29 2 _3388 a,.3839 -.2u83 2.0500| 2.3400 82,2080
-.1053 ® 120 b 393 b5 739 .2k & 106k ®.3685 81 ggkk
-.10 8.1805 & 4033 23,6190 -.20 8 2183 2065 %1.6818
-.0202 b s b yéo0 b3.029 0 4696|4696 1.19967
0 4696 4696 ©2.90316 286 | ®.610 | P.sos ® 970
.30 2 9829 a shs57 82,1647 ko byl | Posiy b 885
40 by.1sk © 560 b2,020 .50 B 7947| B.5205 28300
50 81,2351 2,5725 81.9212 2.00 83,3329 B.5760 a,5178
667 b1 .46 b 588 by.778
1 21.7368 8 6154 a1.5621 0.2 [-0.10 [®-0.0686|20.0559 83 381
b1, 7386 bgrle | aeeoooas -.2685] 8..0500] B.2286 82 390
1.5 82,1402 8 625 81.3495 -.3088] 20 8 2826 82,0326
82,4878 & . 6613 81.2099 -.325 8 okg3| 8,318 81,7914
-.3285  %.0693 %.3305 81 .7024
-0.1947 8.0.0500 |----mne 83 2368 -.3285 ®&.1100| 2.352% 81.5491
-.198838|2,d 20.3265) 9 guy28 -.325 8.1354! & 3641 81.4631
-.195 4,055172 |~=omem- a2 69841 -.30 8,2086] 2.3944 a1.24k45
-.19 208570 | mmmmmm 4y 58328 -1k B 3ah1] 24488 & 8520
-.18 4.128636 | —ccoeem do, 43928 0 L696) 4696 ,71296
-.16 d.190780 | 8.4023 42,2588 286 | cmmmae| e b 506
-1k 4.239736 | -—mmen 4213446 7o R (PR . b sio
-.10 43169570 |—ccmace d1.95774 .50 & 6547l #.5038 8 4915
_.05 4 400525 | -—ounrd 4y 80082 1.50 2.8689) 2.5326 8,335
0 4696 4696 €1.68638 2.00 8.9480| ®.s5hik 8 ,2960
.05 9.531130 | cuce-d d1.593%20
.10 4,587035 | -ceacd d1,51578 0 |-0.326 | ®0 80.2477 81,9600
.20 4686708 | —cccmun 43 39239 -.3657 ®.0500| ®.2958 a1 6627
.28 b 765 b 520 b1 .322 -.3884  B.1400| B.3527 81,2886
.30 A 774755 | ccceend] d1.,29673 -.360 8. 2uL8l B 4001 & 9627
40 a.850421 | P.526 91 21932 -.30 8.3182| 8. 4o6p 8 7720
.50 d,927680 | #.5395 d;.15u82 —.1k 8 4166 2.4554 & 5615
.60 4.995836 | o uum-| 41 .09988 0 4696|4696 46960
.80 41 .,1202677] =-commo| 4101053 286 | P.sho | bygg b sgp
1.00 dy.2325877 2.5719 4 guoo4 .40 bose1 | P.uss b 351
1.20 413357215 —ccmea- 488301 .50 8 5806 &.4948 8 3145
1.60 41 5215140 ®.5940] d 79443 2.00 8 7381 2.5203 a 1772
2.00 d; .687218d 2.6064 d 72821
2.40 €1.857 | -ecooee © 670

BCohen and Reshotko, reference k4,

PLi and Nagamatsu, references 8 and 9.
®Equation (15).

dSmith, reference 3.

e
Hartree, reference 2,
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(c) Adverse pressure gradients. 7y = 7/5.

Figure 5.- Continued.
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(d) Adverse pressure gradients. 7y = 5/3.

Figure 5.- Concluded.
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(a) Hemicylindrical-nose flat plate, reference 16.
Figure 1l.- Comparison of theory with experiment for blunt-nose bodies.
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Figure 1l.- Concluded.



o AV

5T

S

Rew,tx1076 a,deg
‘ O 0.8 10
(| .18 -
10 r = < .18 o
; A
LN

A5 -5
I8 -0

11 )y -
{ B ) DRARS (RS NN NOIIN 1900 it 1 11 | pERSH 184
} T —-— EOREDS (NS0 U001 [0ED1440) ) 13 3 1T
l ; - H HT isisi ik SRSE8 AREER sEEY o
6 H 2 3 = Zrzzooig 3
H £ ™ ¥ =
= - & = =+ FEH
p' id : s b B "'E’ﬂu'?
p 1414 d% H H
o 4 - =
a4k i ;
A i
-
3 ’
- 4
i = i
+ 1§ D
| i :ﬂ I |
2 ; Lot
L i
‘ H
. T N
A0 (0 A iL
1 10301 U i e
M i
iHill: Power law fitted to pressure data,n=-0.399 /ity i
g | - j H
dilbicLi lf l'rli eal |1
i e
1A A i l

R, tx10"8 a,deg
16 10
.24 )

23} ©

rebQono

: > H .ls - 5
Sk = == 23
£ H 222 A8 =10
4 T i SBEEE 32 =2t
Nst.w o g = i HHE . =i HHee
Pu/Po -3 it H
+ il | 1 {
- 1L
-
1 H T
2 e JHHH
) th T Theory,blunt L.E. H#
i H dp
Il op °
; Poor thermocouple Pu"Pm: gy 0y %20
TSI installation , see text il
i &
*‘41 ‘\ Ll i
R (I IR |

o
o
®
N
o
»
o

6 8 10

-]

Figurez 12.- Comparison of theory with experiment on a hemicylindrical-
nose slab at M, = 6.8.



58

*l2 9ousIses WOII BIBY °*HOBIIB JO ITJus 0I5z 18 998Td 3%TI
a3pa-BuIpeaT~-drsyg °sssW{OTY)} JIaABT-ATIEpUNOQ UO OT38I oangsoxd T8O0T JO 30931F -*¢T oanB1d

o] 9 v € 3 1 9 » ¢ 3 | 9 v
1 I ot
m » |O»
HH 0
8 —
»
T - 8 Y 1| ON
i frHE NP AL H
gni, 1 . 1 L L.L L - N S N vt R f - mdrd
. os
- =< —
T i T T 1 Ot
T i1 t T T
| ilink M !
] el 0 x|On
N ! ’ -
H { i
T 8 T THT : & I b
Al ; i 0z g
i A i 2 os
E =8 i : f = |
m T i !
_ { i
i | I R
T { 1] o
%c'3 O ‘o H &le
' O v o dvi=* "y m i, o 2
889'0 O I e 1
ol uy®y * e e S .
o- »W.T ; Hm T M 1 “NW n




29

S prr , et :
Rahté
H# = My, =3.95 0 1650
3 06600 |
&S SRR
2
-l--“
I
[l H'
| L
30 pr E) s t
. 20] ' S -
g |58 ] H | n
| »
10 ZszEssEc 5
E 22 S E=sssacs s= =
7 ) - - .
83°i"; £ £ _
x 20
g [
m T - }] ]
wo| > i
10 | I
Re) 7 2 3 5 7 10 20
X
t
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reference 16.
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Figure 15.- Effect of local pressure ratio on boundary-layer thickness.
Blunt-leading-edge flat plate at two angles of attack; data from
reference 28.
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